

<Insert Picture Here>

Lustre SMP Scaling Improvements
Liang Zhen
Lustre Group

Agenda

•  Where we started from
•  Why we need this project
•  The problems
•  What we can improve
•  Current status

Where we started from
•  Initial goal of this project

•  Soft lockup of LNet on client side
•  RDMA Portal can have very long buffer list (hundreds even

thousands of match-entries on the list, need to compare
one by one)

•  Survey on low-end 4-core machines
•  LNet has one single global spinlock to protect everything
•  Lockmeter shows extremely high contention on the global lock

while running insanity network test (lnet_selftest)
•  40+% UTIL (fraction of time that the lock was held during

the report interval)
•  60% CON (fraction of lock requests that found the lock was

busy when it was requested)
•  RPC rate is not good enough - it’s CPU bound!

Why we need this project

•  With more powerful CPU, is metadata performance
improving?
•  Unfortunately…

•  Metadata performance is not disk bound
•  We have tested with ramdisk
•  Profiles show that performance is CPU-bound on scaling

tests, especially on metadata stack

•  Stability of Lustre
•  Not all soft lockup is a real BUG, it’s probably just bad

implementation

•  I/O performance on NUMA systems

Why we need this project
Our objectives

•  Make metadata performance faster
•  Unlock potential of higher IOPS from Flash/SSD

•  Better I/O performance on NUMA systems

•  Take advantage of rate of innovation in commodity
microprocessor technology so our Lustre storage
products can keep pace

•  Less pressure on CMD

The problems
LNet is the clue

•  No heavy operation by LNet itself after we resolve the
long ME-list (Match Entry) issue
•  List (search/change) operations, assignments, simple

calculations

•  Splitting the global lock by logic-path and making
some cacheline optimizations…
•  4 cores: better performance, Lockmeter: 4% UTIL, 15% CON
•  8+ cores: barely better. It’s still a disaster while running

insanity network test like lnet_selftest

The problems
Overhead of synchronization (1 of 2)

•  Memory speeds can’t catch up with CPU speeds
•  Synchronization requires consistent view of data

across CPUs, so synchronization is much much
slower than normal instructions because of memory
latency

•  Huge amount of data traffic for synchronizations
•  We tried to make critical section faster, but critical

section efficiency is bad
•  Ta (lock acquisition), Tc (Critical section), Tr (lock release)
•  Efficiency = Tc / (Ta + Tc + Tr)

The problems
Overhead of synchronization (2 of 2)

10,000

100,000

1,000,000

10,000,000

100,000,000

1 2 4 8 16

global spinlock
global readlock
global atomic
spinlock table
local spinlock

The problems
All globals are hurting us

•  Global locks are everywhere
•  Simple, but really bad

•  Global stats, global refcount
•  Huge amount of data traffic between CPUs

•  Few people care about cacheline conflicts
•  A simple code sample

 struct foobar {
 spinlock_t locka;
 Int a;
 Spinlock_t lockb;
 Int b;
}

The problems
Non-CPU affinity threads pool

•  Most LND threads and ptlrpc service threads are not
CPU affinity

•  Threads are scheduled by different CPUs, all data need to be
taken to local cache of CPUs again and again

•  Global waitq
•  Contention on waitq (sleep / wakeup)
•  Round robin wakeup, refresh cache again and again

The problems
Hash tables & Misc

•  We are not careful enough about our hash tables
•  The two biggest hash tables are not well-hashed

•  Object hash
•  Ldlm hash

•  We have a hash table implementation for general purposes
which is used everywhere, however…

•  Not good enough, a lot of unnecessary addref / decref,
they are expensive atomic operations most of the time

•  Soft lockup

•  Misc
•  Over-protected logic
•  LASSERT on very expensive conditions

What we can improve
libcfs infrastructure (1 of 2)

•  CPU abstraction
•  CPU-node of libcfs can be (1-N) physical core, or NUMA node

•  New interfaces for NUMA allocator
•  Local memory for each node, not only for MDT stack, also

helpful for OST stack

•  New interfaces for per-CPU data allocator
•  New interfaces for cacheline aligned allocator
•  LIFO wait-queue

•  Instead of FIFO wait-queue

What we can improve
libcfs infrastructure (2 of 2)

•  Scalable local-global lock
•  Very fast local change
•  Slow global change

•  A better implementation of cfs_hash
•  More flexible APIs
•  Different refcount modes and more efficient find-add
•  Much less addref/decref
•  Much SMP safer rehash & iteration

What we can improve
Restructured LNet & LND

•  Each CPU has its local entry for LNet
•  Each CPU has its own buffers (ME & MD list)

•  Requests are received on local buffer
•  Lazy portal is more important now

•  EQ (Event Queue) improvements
•  EQ callback can happen concurrently on different CPUs
•  EQ has per-CPU refcount

•  CPU affinity LND threads
•  Connections are hashed by NIDs
•  Each CPU has its own peer table
•  Completion vector of OFED

What we can improve
ptlrpc service

•  Per-CPU service data
•  Locks, request buffer, request queue, reply state, AT…
•  More grained locks

•  Although they are local to each CPU, we still have cross
CPU data access sometimes

•  CPU affinity service threads pool
•  Local waitq for each CPU, otherwise all threads are serialized

by the global waitq
•  LIFO wait queue can help to reduce active threads

•  Cacheline optimization is always important

What we can improve
Ptlrpc performance

0

100000

200000

300000

400000

500000

600000

700000

1 2 4 8 16

32

40

64

80

12
8

25
6

32
0

1 client
2 clients
4 cients
8 clients
16 clients
32 clients
40 clients

rp
c

/ s
ec

thread
s

echo getattr

thread
s

0�

100,000�

200,000�

300,000�

400,000�

500,000�

600,000�

700,000�

RP
Cs
	 /
	 s
ec
�

echo	 geta.r�

1 client�

2 clients�

4 clients�

8 clients�

16 clients�

32 clients�

Total	 	 #	 of	
threads�

What we can improve
Hash tables and overprotected data

•  Better hash for objects and ldlm resources
•  1 million files tests, max search depth dropped from

hundreds to less than 50
•  It not only reduces overhead of searching, also avoids cache

pollution
•  One cache miss means hundreds of cycles on most

processors

•  Over-protected data
•  We protect the same data at different levels of stack
•  MDT takes 2 locks on create/unlink where as one would be

enough (survey still under way)

What we can improve
Everywhere

•  Lazy update to globals
•  Big reference count
•  Per-CPU stats
•  Code level improvement everywhere

•  Unnecessary lock dance
•  Wrong lock type
•  Redundant memset in our allocators

What we can improve
File stat (1-128 clients, 1 thread/client, 4K files/thread)

0

20000

40000

60000

80000

100000

120000

2 4 8 16 32 64 128

current (private dir)

patched (private
dir)

0

20000

40000

60000

80000

100000

120000

2 4 8 16 32 64 128

current (shared
dir)
patched (shared
dir)

What we can improve
opencreate / removal
(1-128 clients, 1 thread/client, 4K files/thread)

0

5000

10000

15000

20000

25000

30000

2 4 8 16 32 64 128

current (private
dir)

patched (private
dir)

0

5000

10000

15000

20000

25000

30000

2 4 8 16 32 64 128

current (shared
dir)

patched
(shared dir)

opencreate

0

5000

10000

15000

20000

25000

30000

2 4 8 16 32 64 128

current (private
dir)
patched (private
dir)

removal

0

5000

10000

15000

20000

25000

30000

2 4 8 16 32 64 128

current (shared
dir)
patched (shared
dir)

removal

opencreate

Current status

•  Implementation almost complete
•  Initial tests show good result
•  Need more survey on backend filesystem
•  Metadata performance testing on Hyperion is

underway
•  BULL is helping us to test NUMIOA performance
•  Changes are targeted for the Lustre 2 code branch

The preceding is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

