
Porting Lustre to Operating Systems
other than Linux

Ken Hornstein
US Naval Research Laboratory

April 16, 2010

 Motivation

 We do a lot of data visualization on Lustre data, and would
like to do that on the Macintosh platform.

 General strategy of providing uniform access across our
entire system.

 Having Lustre available for more client systems increases
Lustre use and visibility.

 Porting Lustre to one vnode-based operating system would
help it be ported to another.

 History

 Initial Lustre port done in 2005.

 Targeted toward MacOS 10.3 (Panther).

 Some of the design decisions made for that port made
long-term support difficult.

 Port reached some level of functionality, but has been
bit-rotting for a number of years.

 Fast-Forward to the Present

 Current tree does not contain all of the port.

 libcfs has been split off to OS-specific directories and has a
set of Darwin (MacOS X) functions and header files.

 A fair number of modules (obdclass, lnet, ksocklnd) had
kernel module metadata files (Info.plist).

 Some of the include files under lustre/include have been
segmented off with OS-specific versions.

 Build system has knowledge of MacOS X.

 But ...

 Lustre has been moving forward for five years.

 No effort had been made on maintaining cross-platform
portability.

 The port uses many old MacOS X kernel interfaces.

 Missing bits of port contain some of the more important
pieces (the page caching code and the vnode interface).

 Challenges

 Lack of documentation of Lustre internals.
 Understanding Lustre Filesystems Internals helps.

 Lack of documentation of Linux internals.

 Lack of documentation on MacOS X internals.

 Design Decisions

 Try to concentrate MacOS X changes to libcfs and
OS-specific files.

 Minimize #ifdefs in generic Lustre code.

 No changes at all to MacOS X.

 Target kernel modules instead of FUSE.

 Base code on master branch.

 Initial Work (2-4 weeks)

 Work through bitrotted code in libcfs.

 Many Linux interfaces prefixed with "cfs" - rename or
implement functionality.

 Some code actually simplified (kernel thread argument
handling & timers)

 Switched many interfaces (mostly locking) to newer
interfaces.

 Spinlocks - IOSimpleLock
 Mutexes - IOLock
 Semaphores - IORecursiveLock

 Initial Work (continued)

 libcfs networking code cleaned up (much simpler!).

 Lustre tracefile implementation problematic (CPU
numbering).

 Lots of challenges with ioctl interface (32 bits versus 64 bits).

 Kernel-userspace communication switched to using
socketpair().

 Ported ptlctl to test basic networking functionality.

 Next Steps (6-7 weeks)

 obdclass took the largest amount of effort.

 All modules call through it (register callback interfaces that
are used by all other modules).

 Contains the cache handling code (cl), llog,
encryption/checksum interface, part of VFS interface, sysctl
handling, inode attribute management, capability
management.

 Significant parts of obdclass are OS-specific!

 Next Steps, continued

 Fair amount of changes were required to simply switch to
cfs prefix for functions/datatypes (struct page -> cfs_page_t).

 Switching away from static lock initializers to explicit lock
allocation/free in module startup and shutdown.

 Segregate Linux-specific functions into files in "linux"
directory.

 Write MacOS X versions of Linux functions (crypto interface)
and bring over missing functionality from Linux (radix tree).

 Next Steps, continued

 Once obdclass was ported, ptlrpc was next.

 ptlrpc work exposed a number of bugs in the MacOS X
versions of the Linux synchronization functions (mostly
completion and waitq).

 After ptlrpc was done, the rest of the modules went relatively
smoothly.

 Remaining module work consisted of switching away from
Linux include files and #ifdef’ing out procfs support.

 Crossing the Finish Line (3 weeks)

 llite is the module that interfaces with the Linux VFS
system. By necessity it is very Linux-specific.

 A direct port of llite would have resulted in a gigantic number
of #ifdef’s and massive restructuring, and the result would
unlikely ever be accepted back into Lustre.

 Decided to create a new module to handle the MacOS X
vnode interface (lvnode).

 An Aside about Vnodes

 Interface developed by Sun as part of development of NFS.
 Vnodes are virtual versions of inodes; one vnode per

filesystem object (files and directories). In MacOS X the
vnode is an anonymous structure (cannot access contents).

 Filesystems create vnodes as necessary (when files are
looked up by the operating systsem) and fill in
filesystem-specific information in the vnode private area.

 A filesystem provides methods at vnode creation time to
perform operations on the vnode (such as create, read,
write, unlink).

 Lvnode Implementation Details

 Lvnode indexes Lustre files via the fid (unique identifier per
filesystem).

 Vnode contains pointer to lnode structure, which contains
fid, mount point (our version of superblock), which in turn
contains pointer to our metadata and data exports.

 The operating system manages the caching between names
and vnodes (and due to vnode containing lnode, the
mapping between names and Lustre fid).

 More Implementation Details

 The data flow in llite due to Lustre caching is ... confusing.
Also, not sure how to interface it with the MacOS X buffer
cache.

 For the first effort, decided to skip caching completely.

 Since there were problems in my first attempt to use intent
locks, attribute caching is not implemented at this time as
well.

 Readdir performance is sub-optimal; also, no
statahead/readahead.

 Challenges During Implementation

 Misuse of intent locking caused LBUG() on MDS!

 Low level differences beween Linux and MacOS X manifest
at a high level (bit ordering difference caused failure reading
config log).

 Memory management of Lustre API not documented
anywhere.

 Lack of communication between client and server results in
client eviction; solution is to use the pinger, but that seems
wrong.

 The Ugly Details

 Currently open/close are not actually registered on the MDS.

 readdir() calls md_readpage() for each call.

 I/O is done via obd_brw() (one or more per each read/write()
call), and is done synchronously.

 setattr currently not supported (although looks relatively
straightforward).

 Unanswered Questions

 For caching, should we use Lustre’s caching (which seems
to be designed to interface with the Linux VM system), or
use the operating system’s buffer cache?

 MacOS X does not have anything like the Linux shrinker, so there is no
way to know if VM pressure is an issue.

 What work is necessary to cooperate with the MacOS X
Finder?

 Future Work

 Clean up resource leaking (lock leaks are terrible, due to
lack of lock cleanup needed on Linux).

 Implement data caching!

 Implement intent locking to cache attribute and file data.

 Implement Kerberos support.

 Implement Infiniband support (o2iblnd).

 Things That Would Aid Portability

 Greater discipline on using "cfs" prefix in generic Lustre
code.

 Break up OS-specific obdclass parts into different directory,
or even a different module.

 Purge use of struct inode and struct super_block in obdclass
(using cfs_inode_t and cfs_super_block would be fine).

 Work on creating a more generic cache system to interface
with buffer caches used by other operating systems.

 Long Term Plans

 We get funding for doing new things; developing MacOS X
port is something new, but long-term support for a MacOS X
client is NOT new work.

 Would like to eventually host the source code on the Oracle
git server.

 In a perfect world, MacOS X port would be supported by
Oracle (pipe dream!) or by the community, and would be
considered a supported client platform.

Any Questions?

