

LCE: Lustre at CEA

Stéphane Thiell – CEA/DAM (stephane.thiell@cea.fr)

Lustre at CEA updates (2009)

- Open Computing Center (CCRT) updates
- CARRIOCAS (Lustre over WAN) project

• 2009-2010 R&D projects around Lustre

- Lustre 2.0 early evaluation
- Hardware: high-end storage systems prototypes
- Open source projects around Lustre

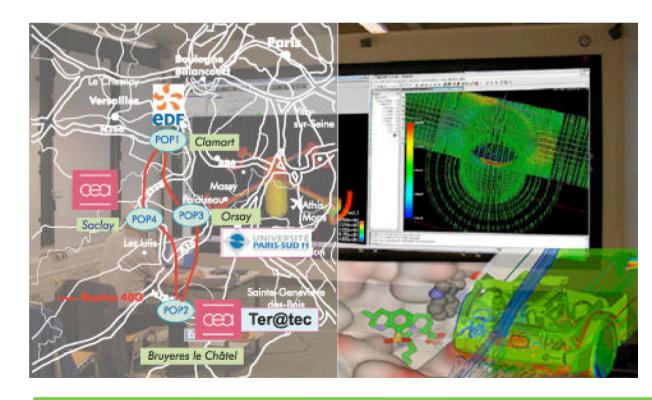
• 2010: Lustre and the TERA-100 project

- Data-centric architecture
- High-performances, multi-petabytes Lustre filesystems
- Lustre on TERA-100

• 2 production Linux compute clusters

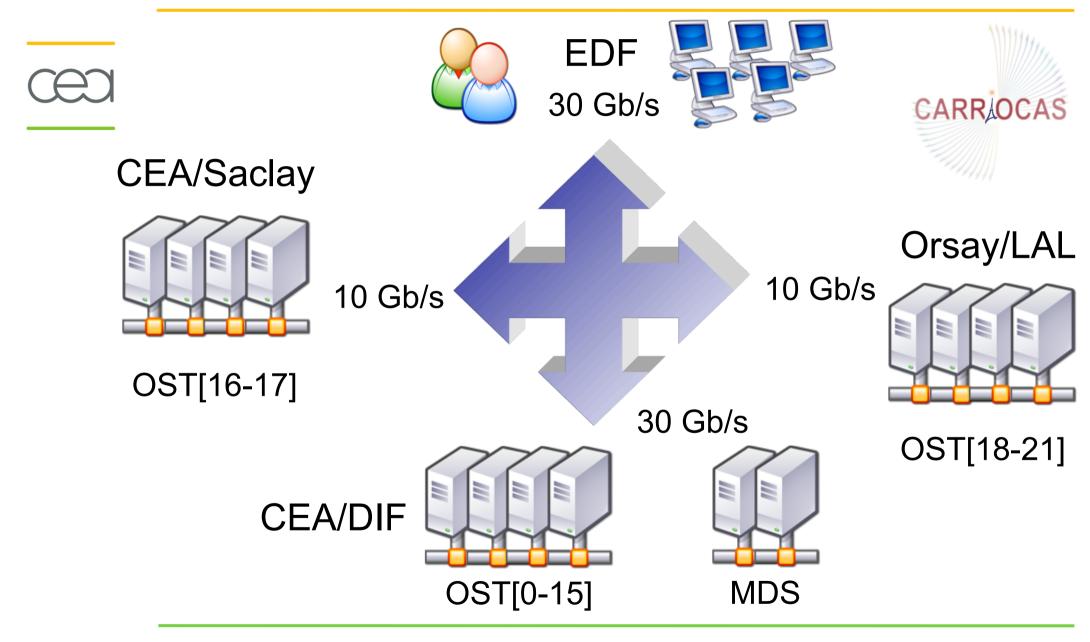
- Platine: 50 Tflops (IB DDR)
- Titane: 150 Tflops (IB DDR/QDR mixed)

Lustre: plenty of small files


- 2 Lustre filesystems per cluster: /scratch and /work
- 300 TB max per FS
- Up to 100 millions files seen on /scratch
- Accounting and monitoring managed by Robinhood

CARRIOCAS project

Lustre over WAN


- 4 sites near Paris in France
 - CEA/DIF Ter@tec, CEA/Saclay, EDF Clamart, Orsay University
- 40 Gbit/s (one channel) links between sites, 10 Gbit/s NICs
- One OST pool per site to control files localization

CARRIOCAS

CARRIOCAS: Lustre configuration

CARRIOCAS project: some results

œ

Checkpoint/Restart

- 8 Lustre clients at EDF Clamart
- Servers at CEA/DIF (30 Gb/s max)
- LNET and TCP/IP tunings needed for WAN
- Results:
 - 2880 MB/s write (22.4 Gb/s 75% efficiency)
 - 3120 MB/s read (24.9 Gb/s 83% efficiency)

Remote movie visualization

- Visualization wall at EDF Clamart
- Servers at CEA/DIF
- Hundred of GB per movie
- Result: 23,9 millions pixels at 40+ images/sec
 - HD TV: 2 millions pixels at 25 images/sec

Early Lustre 2 evaluation at CEA/DIF

Lustre 2.0 on TERA+ cluster

- CEA/DAM HPC R&D cluster
- 8 services nodes, 160 nodes (1280 compute cores)
- DDN S2A 9550 SATA Lustre storage
- Bug reporting made easy

Lustre 2.0 on TERA-100 demonstrator

- 432 blade nodes cluster (Nehalem-EP)
- 2 x LSI XBB2 Lustre storage

Lustre 2.0 on Global Lustre demonstrator

- DDN S2A 9550 Lustre storage
- 10 x Sun Fire X4270 Lustre servers
- Mounted on TERA-100 demonstrator through 3 LNET routers

Some TERA+ Bull R422 nodes

High-end storage technologies prototyping

DDN SFA10K

- Early DDN SFA10K test couplet (spring 2009)
- Features validation on TERA+ cluster with Lustre 2.0

DDN SFA10K TERA+ test couplet

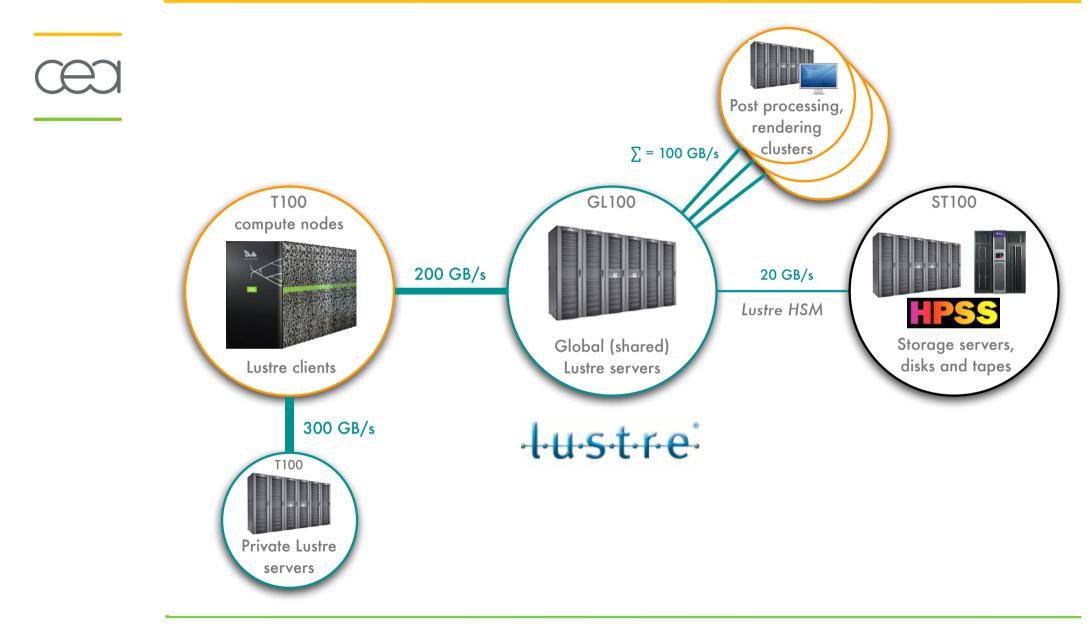
LSI Pikes Peak SAS2 storage system (Camden enclosures)

LSI Pikes Peak

- Early LSI Pikes Peak SAS2 6 Gb/s prototype controller
- Multiple SAS 6Gb/s enclosures tests

LSI Pikes Peak SAS 6Gb/s controller (2009 prototype)

- Lustre/HSM binding Aurélien's presentation tomorrow morning
- Shine Lustre administration tool (Bull & CEA collab.)
 - Latest version is 0.906, which adds router support and parallel fsck.
 - http://lustre-shine.sourceforge.net
- Robinhood Monitor and purge large filesystems
 - Now supports Lustre 2.0 changelogs
 - http://robinhood.sourceforge.net


• NFS-Ganesha – NFS server running in User Space

- Dedicated backend modules called FSAL (which stands for File System Abstraction Layer) – eg. POSIX, HPSS, …
- FSAL on top of Lustre 2.0 available since v0.99.52
- http://nfs-ganesha.sourceforge.net

Lustre on TERA-100

TERA-100 data-centric architecture overview

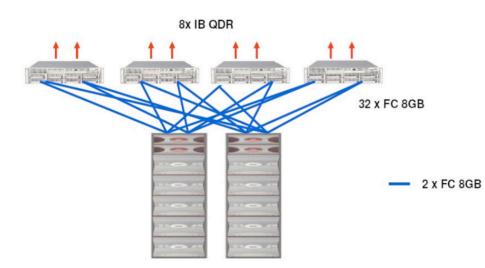
Goal

Provide enough bandwidth for checkpoint/restart and temporary files

Requirements

- 300 GB/s global bandwidth on Lustre
- Part of TERA-100 machine (share the cluster interconnect)
- High disk density
- Delivery must start Q2'2010 (has started!)

TERA-100 Private Lustre storage architecture



Metadata Cell

- 4 MDS (Bull Server MESCA 4S3U)
- 1 DDN SFA10K couplet (300000 IOPS)

• 16 I/O Cells of

- 4 OSS (Bull Server MESCA 4S3U)
- 2 DDN SFA10K couplets (10 GB/s each)

DDN SFA10K SAS 3Gb backend cables

Data-centric architecture

- Zero-copy data access for post-processing clusters
- Create a very large HPSS cache filesystem

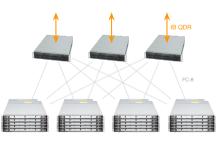
Requirements

- 200 GB/s bandwidth with TERA-100 (on Lustre)
- 100 GB/s bandwidth with other clusters
- Total disk space >15PB
- High density
- Delivery by mid-2010

2 choices for Global Lustre storage system (GL100)

DDN proposal

Same as Private Lustre Storage (SFA10K)


60 disk slots DDN enclosure (SA6620)

LSI proposal

LSI Pikes Peak (with Wembley SAS2 enclosures)

LSI Wembley SAS2 enclosure (60 disk slots)

3 nodes IOCell with Pikes Peak

Infiniband QDR storage network

Voltaire QDR Infiniband 4700 switch

Lustre routers

- 42 LNET routers on TERA-100 (4 x IB QDR each)
- Networks separation
- Global filesystem QoS

Lustre 2 on TERA-100 and Global Lustre

- Lustre/HSM binding readiness
- MDT changelogs (faster Robinhood!)
- Improved recovery
- Improved SMP scaling (useful for Bull MESCA nodes)
- ext4-ldiskfs (larger OSTs)
- includes Lustre 1.8 interesting features (OST pools, Adaptive timeouts, Version Based Recovery)

Lustre administration

- Centralized with shine
- High Availability managed with shine (support smooth OST failover) and Bull tools (based on Pacemaker)

Questions?